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The Speech Signal: Sampling

• The analog speech signal captures pressure variations in air 
that are produced by the speaker

• The same function as the ear

• The analog speech input signal from the microphone is 
sampled periodically at some fixed sampling rate
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• What remains after sampling is the value of the 
analog signal at discrete time points

• This is the discrete-time signal
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• The analog speech signal has many frequencies
• The human ear can perceive frequencies in the range 

50Hz-15kHz (more if you’re young)

• The information about what was spoken is carried 
in all these frequencies

• But most of it is in the 150Hz-5kHz range

The Speech Signal: Sampling



• A signal that is digitized at N samples/sec can represent frequencies up 
to N/2 Hz only.

• The Nyquist theorem

• A signal that is sampled at N samples per second must first be low-pass 
filtered at N/2 Hz to avoid distortions.

• Ideally, one would sample the speech signal at a sufficiently high rate 
to retain all perceivable components in the signal.

• > 30kHz

• For practical reasons, lower sampling rates are often used, however
• Save bandwidth / storage

• Speed up computation

The Speech Signal: Sampling



• Audio hardware typically supports several standard rates
• E.g.: 8, 16, 11.025, or 44.1 KHz (n Hz = n samples/sec)

• CD recording employs 44.1 KHz per channel – high enough to 
represent most signals accurate.

• Speech recognition typically uses 8KHz sampling rate for 
telephone speech and 16KHz for wideband speech

• Telephone data is narrowband and has frequencies only up to 4 
KHz

• Good microphones provide a wideband speech signal
• 16KHz sampling can represent audio frequencies up to 8 KHz

• This is considered sufficient for speech recognition

The Speech Signal: Sampling



The Speech Signal: Digitization

• Each sampled value is digitized (or quantized or 
encoded) into one of a set of fixed discrete levels

• Each analog voltage value is mapped to the nearest 
discrete level

• Since there are a fixed number of discrete levels, the 
mapped values can be represented by a number; e.g. 8-
bit, 12-bit or 16-bit

• Digitization can be linear (uniform) or non-linear 
(non-uniform)



The Speech Signal: Linear Coding

• Linear coding (also known as pulse-code modulation
or PCM) splits the input analog range into some 
number of uniformly spaced levels.

• The no. of discrete levels determines no. of bits 
needed to represent a quantized signal value; e.g.:

• 4096 levels require 12-bit representation

• 65536 levels require 16-bit representation

• In speech recognition, PCM data is typically 
represented using 16 bits



The Speech Signal: Linear Coding

• Example PCM quantizations into 16 and 64 levels:

• Since an entire analog range is mapped to a single 
value, quantization leads to quantization error

• Average error can be reduced by increasing the number 
of discrete levels
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The Speech Signal: Non-Linear Coding
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• Converts non-uniform segments of the 
analog axis to uniform segments of the 
quantized axis

– Spacing between adjacent segments on the 
analog axis is chosen based on the relative 
frequencies of sample values in that region

– Sample regions of high frequency are 
more finely quantized
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The Speech Signal: Non-Linear Coding

• Thus, fewer discrete levels can be used, without significantly 
worsening average quantization error

• High resolution coding around the most probable analog levels
• Thus, most frequently encountered analog levels have lower 

quantization error

• Lower resolution coding around low probability analog levels
• Encodings with higher quantization error occur less frequently

• A-law and m-law encoding schemes use only 256 levels (8-bit 
encodings)

• Widely used in telephony

• Can be converted to linear PCM values via standard tables



Effect of Signal Quality

• The quality of the final digitized signal depends critically on 
all the other components:

• The microphone quality

• Environmental quality – the microphone picks up not just the 
subject’s speech, but all other ambient noise

• The electronics performing sampling and digitization
• Poor quality electronics can severely degrade signal quality

• E.g. Disk or memory bus activity can inject noise into the analog circuitry

• Proper setting of the recording level
• Too low a level underutilizes the available signal range, increasing 

susceptibility to noise

• Too high a level can cause clipping

• Suboptimal signal quality can affect recognition accuracy to 
the point of being completely useless



Digression: Clipping in Speech Signals

• Clipping is a kind of signal distortion. 

• The amplitude of a clipped signal is limited by some threshold(s). 

• On oscillograms, clipping usually appears as a cutoff of signal 
amplitude. 

• Clipping can be single-sided (only the top or only the bottom of 
the signal is cut) and double-sided. 

• Clipping and non-linear distortion are the most common and 
most easily fixed problems in audio recording

• Simply reduce the signal gain



• Figures below show energy at various frequencies in a 
signal as a function of time

• Called a spectrogram

• Different instances of a sound will have the same generic 
spectral structure

• Features must capture this spectral structure

Sound Characteristics are in Frequency Patterns
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Computing “Features”

• Features must be computed that capture the spectral 

characteristics of the signal

• Important to capture only the salient spectral characteristics 

of the sounds

– Without capturing speaker-specific or other incidental structure

• The most commonly used feature is the Mel-frequency cepstrum

– Compute the spectrogram of the signal

– Derive a set of numbers that capture only the salient aspects of this 

spectrogram

– Salient aspects computed according to the manner in which humans 

perceive sounds

• A cepstrum is the result of taking the inverse Fourier transform 

of the logarithm of the estimated spectrum of a signal.



Capturing the Spectrum: The discrete Fourier transform

• Transform analysis: Decompose a sequence of numbers into 

a weighted sum of other time series

• The component time series must be defined

– For the Fourier Transform, these are complex exponentials

• The analysis determines the weights of the component time 

series



The complex exponential

• The complex exponential is a complex sum of two sinusoids

ejq = cosq + j sinq

• The real part is a cosine function 

• The imaginary part is a sine function

• A complex exponential time series is a complex sum of two time series

ejwt = cos(wt) + j sin(wt)

• Two complex exponentials of different frequencies are “orthogonal” to 

each other. i.e.
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• The discrete Fourier transform of the above signal actually computes 
the Fourier spectrum of the periodic signal shown below

• Which extends from –infinity to +infinity

• The period of this signal is 31 samples in this example

The discrete Fourier transform



• Discrete Fourier transform coefficients are generally complex
• ejq has a real part cosq and an imaginary part sinq

ejq = cosq + j sinq

• As a result, every X[k] has the form

X[k] = Xreal[k] + jXimaginary[k]

• A magnitude spectrum represents only the magnitude of the 
Fourier coefficients

Xmagnitude[k] = sqrt(Xreal[k]2 + Ximag[k]2)

• A power spectrum is the square of the magnitude spectrum

Xpower[k] = Xreal[k]2 + Ximag[k]2

• For speech recognition, we usually use the magnitude or 
power spectrum

The discrete Fourier transform



• A discrete Fourier transform of an M-point sequence will 
only compute M unique frequency components

• i.e. the DFT of an M point sequence will have M points

• The M-point DFT represents frequencies in the continuous-time 
signal that was digitized to obtain the digital signal

• The 0th point in the DFT represents 0Hz, or the DC 
component of the signal

• The (M-1)th point in the DFT represents (M-1)/M * the 
sampling frequency

• All DFT points are uniformly spaced on the frequency axis 
between 0 and the sampling frequency

The discrete Fourier transform



• A 50 point segment of a decaying sine wave sampled at 8000 Hz

• The corresponding 50 point magnitude DFT. The 51st point (shown in red) 
is identical to the 1st point.

Sample 0 = 0 Hz Sample 50 = 8000Hz
Sample 50 is the 51st point

It is identical to Sample 0

The discrete Fourier transform



• The DFT of one period of the sinusoid shown in the figure computes the 

Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency

– The second peak in the figure also represents the same frequency as an effect of 

aliasing

Windowing
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• The DFT of one period of the sinusoid shown in the figure computes the 

Fourier series of the entire sinusoid from –infinity to +infinity

• The DFT of a real sinusoid has only one non zero frequency

– The second peak in the figure also represents the same frequency as an effect of 

aliasing

Magnitude spectrum
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• The DFT of any sequence computes the Fourier series for an infinite repetition 

of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 

inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing



• The DFT of any sequence computes the Fourier series for an infinite repetition 

of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 

inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing



• The DFT of any sequence computes the Fourier series for an infinite repetition 

of that sequence

• The DFT of a partial segment of a sinusoid computes the Fourier series of an 

inifinite repetition of that segment, and not of the entire sinusoid

• This will not give us the DFT of the sinusoid itself!

Windowing

Magnitude spectrum



Windowing

Magnitude spectrum of segment

Magnitude spectrum of complete sine wave



• The difference occurs due to two reasons:

• The transform cannot know what the signal actually looks like 

outside the observed window 

– We must infer what happens outside the observed window from what 

happens inside

• The implicit repetition of the observed signal introduces large 

discontinuities at the points of repetition

– This distorts even our measurement of what happens at the boundaries of 

what has been reliably observed

Windowing



• The difference occurs due to two reasons:

• The transform cannot know what the signal actually looks like 

outside the observed window 

– We must infer what happens outside the observed window from what 

happens inside

• The implicit repetition of the observed signal introduces large 

discontinuities at the points of repetition

– This distorts even our measurement of what happens at the boundaries of 

what has been reliably observed

– The actual signal (whatever it is) is unlikely to have such discontinuities

Windowing



Windowing

• While we can never know what the signal looks like outside the 

window, we can try to minimize the discontinuities at the 

boundaries

• We do this by multiplying the signal with a window function

– We call this procedure windowing

– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:

– Keep the windowed signal similar to the original in the central regions

– Reduce or eliminate the discontinuities in the implicit periodic signal
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Windowing

• While we can never know what the signal looks like outside the 

window, we can try to minimize the discontinuities at the 

boundaries

• We do this by multiplying the signal with a window function

– We call this procedure windowing

– We refer to the resulting signal as a “windowed” signal

• Windowing attempts to do the following:

– Keep the windowed signal similar to the original in the central regions

– Reduce or eliminate the discontinuities in the implicit periodic signal



Windowing

• The DFT of the windowed signal does not have any artefacts introduced by 

discontinuities in the signal

• Often it is also a more faithful reproduction of the DFT of the complete signal 

whose segment we have analyzed

Magnitude spectrum



Windowing

Magnitude spectrum of windowed signal

Magnitude spectrum of complete sine wave

Magnitude spectrum of original segment



Windowing

• Windowing is not a perfect solution

– The original (unwindowed) segment is identical to the original (complete) signal 

within the segment

– The windowed segment is often not identical to the complete signal anywhere

• Several windowing functions have been proposed that strike different 

tradeoffs between the fidelity in the central regions and the smoothing at the 

boundaries 



• Cosine windows:

– Window length is M

– Index begins at 0

• Hamming: w[n] = 0.54 – 0.46 cos(2pn/M)

• Hanning: w[n] = 0.5 – 0.5 cos(2pn/M)

• Blackman: w[n] = 0.42 – 0.5 cos(2pn/M) + 0.08 cos(4pn/M)

Windowing



• Geometric windows:

– Rectangular (boxcar):

– Triangular (Bartlett):

– Trapezoid:

Windowing



Zero Padding

• We can pad zeros to the end of a signal to make it a desired 
length

• Useful if the FFT (or any other algorithm we use) requires signals of a 
specified length

• The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT



• We can pad zeros to the end of a signal to make it a desired 
length

• Useful if the FFT (or any other algorithm we use) requires signals of a 
specified length

• The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT

Zero Padding



• The DFT of the zero padded signal is essentially the same as the DFT of 
the unpadded signal, with additional spectral samples inserted in 
between

• It does not contain any additional information over the original DFT

• It also does not contain less information

Zero Padding

Magnitude spectrum



Magnitude spectra



8000Hz

8000Hz

time

frequency

frequency

128 samples from a speech signal sampled at 16000 Hz

The first 65 points of a 128 point DFT. Plot shows log of the magnitude spectrum

The first 513 points of a 1024 point DFT. Plot shows log of the magnitude spectrum

Zero padding a speech signal



Pre-emphasizing a speech signal

• The spectrum of the 
speech signal naturally has 
lower energy at higher 
frequencies

• This can be observed as a 
downward trend on a plot 
of the logarithm of the 
magnitude spectrum of the 
signal

• For many applications this 
can be undesirable

• E.g. Linear predictive 
modeling of the spectrum

Log(average(magnitude spectrum))



• This spectral tilt can be 
corrected by pre-
emphasizing the signal

• spreemp[n] = s[n] – *s[n-1]

• Typical value of  = 0.95

• This is a form of 
differentiation that boosts 
high frequencies

• This spectrum of the pre-
emphasized  signal has a 
more horizontal trend

• Good for linear prediction 
and other similar methods

Log(average(magnitude spectrum))

Pre-emphasizing a speech signal



The process of parametrization

The signal is processed in segments. 

Segments are typically 25 ms wide.
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The process of parametrization

The signal is processed in segments. 

Segments are typically 25 ms wide.

Adjacent segments typically overlap

by 15 ms.



Each segment is typically 20 or 

25 milliseconds wide
Speech signals do not change 

significantly within this short time interval

Segments shift every 10 

milliseconds 

The process of parametrization



Each segment is pre-emphasized

The process of parametrization

Pre-emphasized segment

The pre-emphasized segment is windowed

Pre-emphasized and

windowed segment

The DFT of the segment, and from it the 

power spectrum of the segment is computed
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Final Project
• Team members from 3 (Min) to 5 (Max).

• Submit the names and short proposal (1 page) by 28 March (Deadline).

• The final project should have a short printed report at max 5 pages + Code.

• Prepare short presentation (5-10 slides) for max 10 minutes for all the team 
members.

• The short report should contains the following (Must):

1. Abstract

2. Short Introduction (Max 1 page)

3. Framework diagram

4. Problem statement

5. Objectives

6. The proposed System (Max 2 page)

7. Conclusion

8. References and citations along the text. 

Note: try to avoid copy and paste as much as you can in the report code as well.



Final Project
• Topics:

1. Speech Recognition for English language (at least 10 different words).

2. Speech Recognition for Arabic language (at least 10 different words).

3. Speech Recognition for English alphabets.

4. Speech Recognition for Arabic alphabets.

5. Speaker Verification and Identification - English (at least 3 different 
speakers).

6. Speaker Verification and Identification - Arabic (at least 3 different 
speakers).

7. Implement speech chatbot.

8. Voice Control System for Smart Home.


